Bakken Production Optimization Program

2nd Annual North Dakota Reclamation Conference February 24-25, 2014 Dickinson, ND

Bethany Kurz, Senior Research Manager Energy & Environmental Research Center (EERC) Grand Forks, North Dakota

Bakken Production Optimization Program Partners

Bakken Production Optimization Program Goals

To facilitate ongoing efforts by industry and the state of North Dakota to optimize Bakken/Three Forks production:

- Advanced reservoir characterization and more accurate resource estimates.
- Improved drilling, stimulation, completion, and production techniques and sequences.
- Optimization of wellsite surface operations and reduced surface impacts.

Why Optimization Is Important...

- World-class resource
- Currently, only 3%– 10% recovery factor.
- Small improvements in recovery could yield over a billion barrels of oil.

2011, 24 Bbbl

Dow, 1974

10 Bbbl

Technically recoverable Reserve Estimate

Past Reservoir Development Model

Current Development: Bakken & Three Forks

EERC Focus Areas

- Flare gas collection and utilization.
- Improved waste handling and options for beneficial reuse.
- Options for water recycling, treatment, and reuse.
- Other surface and downhole operational issues (corrosion, scaling, casing integrity).

Benefits of Wellsite Operations Optimization

- Reduce costs and improve efficiency.
- Reduce development and operational impacts to surrounding landowners, infrastructure, and the environment.
- Reduce demands on freshwater resources.

Completed EERC Projects Leading to the Optimization Program Concept

- Evaluation of options for flare gas utilization.
- Demonstration of flare gas utilization in a bifuel drilling application.
- Evaluation of options for nontraditional water supply sources for hydraulic fracturing:
 - Feasibility of recycling and reuse of fracture flowback.
 - Demonstration of brackish groundwater treatment and subsequent use in fracturing.

Photos: news.nationalgeographic.com; www.hcn.org

Observations Regarding Flaring

- Current flaring in the Williston Basin is a result of:
 - A rapid increase in oil production.
 - Growing but still insufficient intrabasin infrastructure to move rich gas to processing.
 - Growing but still limited infrastructure to move dry gas and NGLs to markets outside the state.
- With that said,
 - Forecasts indicate that oil and gas production should stabilize.
 - Industry is investing significant amounts of money to develop infrastructure and processing capabilities.
- The opportunity to capture revenue from flared gas is a moving target.
 - Location-specific (geographic)
 - Time-limited (temporal)

Flare Gas Data – November 2013

Flare Data Analysis – November 2013

Evaluation of Associated Gas Use

- Associated gas alternative use study – analysis of gas use options upstream of gas-processing plants
 - Small-scale gas processing
 - Compressed natural gas (CNG)/liquefied natural gas (LNG) for vehicles
 - Electric power production
 - Chemical production
- Bifuel rig demonstration assessment of fuel savings and operational impacts of associated gas–diesel mix

Complementary Platforms

Prepared for:

Demonstration of Gas-Powered Drilling Operations for Economically Challenged Wellhead Gas and Evaluation of

EERC Study and Final Project Report www.undeerc.org/Bakken/researchstudies.aspx

A Use for Flared Natural Gas

- Power production for drilling rigs is a near-term opportunity.
- Diesel engines properly outfitted with bifuel systems can utilize a mixture of diesel and natural gas.
- Significant fuel savings can be achieved:
 - 30%-60% reduced fuel costs
 - Reduced fuel delivery and associated traffic, engine emissions, and fugitive dust

Summary of Results

- Diesel fuel consumption reduced by 18,000 gallons for two wells over a period of 47 days.
- Fuel-related net cost savings of nearly \$60,000.
- Reduced delivery truck traffic.
- Reduced NO_x emissions and increased CO and HC emissions compared to diesel-only operation. Mitigation achievable with exhaust gas treatment.
- Seamless engine operation using the GTI Bi-Fuel® system.
- Currently ECO-AFS has Bi-Fuel on 21 rigs and 200 generators in North Dakota.

Technology	Possible Impact to Flare Volume	Pros	Cons
NGL Removal	9% reduction deployed at 227 largest flaring locations	 Ease of deployment Ease of operation Extracts highest value product from rich gas 	 Best deployed during first 12 months of operation Increases truck traffic, liquids storage
Power Diesel Replacement	0.5% reduction Power production at 100 1-well locations	Fuel cost savingsEase of deploymentEase of operation	Limited applicable sites
Power Local Load, diesel replacement	10% reduction Power production at 100 1-MW locations	 Reduces overall electrical load growth Ease of deployment Ease of operation 	Limited applicable sites
Power Grid Support	5% reduction One 45-MW grid connect plant	 Supports utility in electrical load growth management Ease of deployment Ease of operation 	 Grid interconnect Guaranteed fuel supply
CNG/LNG	0.1% reduction 25,000 mile/day fleet	Fuel cost savings	Low demand for fuelInfrastructure and vehicle conversion takes time
Truck Transport	30% reduction 100 1-MMCFD sites	Significant flaring impact	900 trucks9 trucks/day/1-MMCFD
GTL	8% reduction 2500 bpd production	Conversion of gas to a higher value liquid product	 Immature at relevant scale High capital cost Complex operation Requires large, consistent gas supply

Technology Summary Points

- Many technologies exist that can be deployed to utilize flared gas.
- Each technology, if deployed widely, can provide a small incremental benefit to gas utilization and flare reduction.
- Distributed-scale technology alone cannot be economically deployed widely enough to achieve the target of 90% gas conservation.
- Additional alternatives may be investigated to improve gas conservation without adversely impacting oil production or exacerbating other challenges such as truck traffic:
 - Gas reinjection for pressure maintenance and improved overall oil recovery

NDPC Flaring Task Force

- EERC's involvement is one outcome of the Bakken Production Optimization Program.
- NDPC's Flare Reduction Goals:
 - Capture 74% by 4th Qtr. 2014
 - Capture 77% by 1st Qtr. 2015
 - Capture 85% by 1st Qtr. 2016
- Key mechanisms to achieve reduction goals:
 - Gas processing expansions and new processing plants
 - New and expanded infrastructure (over \$1.7B investment)
 - Requiring Gas Capture Plans to be included with ADPs

Water Needs for Fracturing

- Hydraulic fracturing requires ~ 2 to 5 million gallons of freshwater per well.
- The water is mixed with chemicals (biocides, proppants, polymers) prior to injection.
- A percentage of the frac water returns to the surface (flowback) and is recovered and disposed of (or recycled).
 - Typically contains dissolved solids (salts), suspended solids, residual hydrocarbons, and fracturing chemicals.

Putting Water Needs in Perspective

- Estimated water demand assuming 2200 wells per year at 4 million gallons per frac: ~ 24.1 MGD
 - 1.8% of total ND fresh water withdrawals
 - Equivalent to about 1.8 inches per year off the surface of Lake Sakakawea.
- Daily pumping volume for a center-pivot irrigator on a ¼ section of land in ND: ~ 1 million gallons
- Typically daily use for a 50,000-person Midwestern city:
 10 million gallons.

Bakken Water Opportunities Assessment: Phase 1

- Partners
 - DOE NETL
 - North Dakota Industrial Commission (NDIC) Oil and Gas Research Council (OGRC)
 - North Dakota Petroleum Council (NDPC)
 - Five major producers
- Goal was to evaluate the feasibility of recycling hydraulic fracturing flowback waters in the Bakken play.
- At the time of the study (2009-2010), we concluded that because of low initial flowback water recovery rates (15% to 40% of original volume within 10 days) and extremely high dissolved salt content, recycling of Bakken fracture flowback water would be challenging.

Water Costs for Fracturing the Bakken

- Acquisition costs
 - \$0.25-\$1.26/bbl of raw water
 - \$0.63-\$5.00/bbl for transportation
- Disposal costs
 - \$0.63-\$9.00/bbl for transportation
 - \$0.50-\$1.75/bbl for disposal via deep well injection
- Total costs
 - \$2.01-\$17.01/bbl

Bakken Water Opportunities Assessment: Phase 2

- Partners
 - DOE NETL
 - NDIC OGRC
 - NDPC
 - Hess Corporation

- Goals were to assess the technical and economic feasibility of upgrading nonpotable groundwater for use in hydraulic fracturing.
- The EERC and Hess conducted a pilot project using a portable reverse osmosis (RO) system provided by GE Water and Process Technologies to treat brackish groundwater for use in hydraulic fracturing.
- This approach was economically competitive with existing water supply sources.

A Key Advancement in Water Recycling and Reuse

- Development of customized fracturing fluid systems that can tolerate higher salinities and various impurities.
- Still requires some form of pretreatment to remove constituents of concern, such as organics and suspended solids.
- Not yet widely employed in the Bakken, but a handful of successful demonstrations have occurred.

Potential Benefits of Salt-Tolerant Frac Fluid Systems

- Less demand for freshwater
- Lower transportation costs
- Less truck traffic for freshwater acquisition and wastewater disposal
 - Reduced road maintenance
 - Less dust
 - Fewer air emissions
- Increased versatility for industry in terms of makeup water sources for hydraulic fracturing

We Need a Paradigm Shift

- Issues related to oil and gas development should not be the sole responsibility of industry.
- North Dakota and its citizens benefit from the strong economy created by oil and gas production.
- Let's tackle optimization of this resource collectively.

For More Information...

John Harju, Associate Director for Research (701) 777-5157; jharju@undeerc.org

Bethany Kurz, Senior Research Manager (701) 777-5050; bkurz@undeerc.org

Energy & Environmental Research Center Grand Forks, North Dakota www.undeerc.org

