Using sub-surface tile drains, calcium amendments, straw, and forage to remediate brine-contaminated soil

J.I. Nielsen R.G. Eilers T.B. Goh

Acknowledgements

- Canadian Natural Resources Ltd. for the field sites and the data presented in subsequent slides.
- My advisors: Robert G. Eilers & Dr. Tee Boon Goh.

Who is Good Lands Environmental?

- Service the Oil Industry in SE Saskatchewan & SW Manitoba since 1997.
- Spill response and clean up.
- Reclamation (remove roads and decommission facilities).
- Large remediation projects (tile drainage systems).

Intro – Oil Production in SE Sask

- Pump-jack extracts emulsion (oil & brine).
- Emulsion is separated into oil and brine.
 - Oil is sold and brine is re-injected.
 - Flare pits were historically used to flare natural gas and dispose of unwanted oil and brine.
- Flare pits were buried without removing source material.
- Salt migration from the buried flare pits caused salt-affected soil areas.

Schematic of Flare Pit Contamination

Flare Pit Excavation and Tile Drainage System Installation

Remediation Process

Remove source (flare pit).
 Install sub-surface tile drains
 Add surface

 amendments (calcium nitrate gypsum & straw).

Grow forages and dewater the tile system.

Chain trencher, sock tile, & crushed rock

Keys to Tile System Success

1. Vegetation

- Establish vegetation on surface.
- 2. Water
 - Manage the water de-water the tile system.
- 3. Soil
 - Add calcium-sourced amendments (gypsum and or calcium nitrate).

Tile System Assessment

- Three key components of the assessment:
 - 1. Vegetation
 - 2. Water: Surface and ground
 - 3. Soil

Detailed Assessment of Tile System 1. Vegetation

Detailed Assessment

- Visual assessment.
- GPS mapping of poor growth areas.

Goals

- Vegetation comparable to off site.
- No bare areas.

2013 - After 10 yrs

Minimize presence of salt

tolerant vegetation.

1. Vegetation Assessment

Detailed Assessment of Tile System 2. Water

Detailed Assessment

- Surface water
 - Influence of topography on how surface water flows.
- Groundwater
 - 0 Depth to water table.
 - Seasonal changes in depth to the water table and quality
 - of water.

Goals

- Surface water
 - Engineering controls to prevent surface water ponding.
 - Groundwater
 O >2 m below ground surface (mbgs).
 OLow salinity if <2 mbgs.
 OComparable to control?

2. Water: Topography

2. Water: Pump Out Water Quality of Tile System

2. Water: Groundwater

Seasonal changes in groundwater depth and quality

Influences of tile on groundwater depth

Detailed Assessment of Tile System 3. Soil

Detailed Assessment

- EM38h (0-60 cm, upper root zone)
- EM38v (0-120 cm, lower root zone)
- EM31v (0-600 cm)
 - Original EM31v compared to new EM31v
- Soil profile.

Goals

 EM38h – Weak (ECe = 2-4 dS/m)-Moderate salinity (ECe = 4-8 dS/m)

3. Soil: Comparison of 2001 and 2010 EM31v

(0 - 600 cm)

62% reduction in area >300 mS/m

3. Soil: EM38v - deep root zone salinity (0-120 cm)

EM maps from Carson Environmental Services Ltd.

Conclusion

Results of remediation interventions - 2001 to 2010:

- 1. Extent of severe contamination has been reduced by 62%
- 2. Bare soil areas have been completely re-vegetated with salt tolerant grasses and forages.
- 3. Groundwater salinity has declined consistently due to pumping and dilution by spring recharge.
- 4. Water table has been stabilized at 2 m depth of the tiles.
- 5. Extent of strong salinity in the upper root zone has been reduced to 1000 square meters.

Can Tile be Decommissioned?

- 1. Vegetation
 - Bare areas eliminated but vegetation not comparable to off site (no alfalfa on tile site).
- 2. Water
 - Surface water will pond in slough adjacent to tile.
 - Groundwater within 2 m of surface and still saline.
- 3. Soil
 - Upper root zone (EM38h/0-60 cm)still saline (ECe > 8 dS/m).

Thank you jennifer@goodlandsenviro.com

2002: Before tile system

