

Evaluation of Soil Treatment Techniques on Remediated Brine Spill Sites in western North Dakota

Hannah Tomlinson, Aaron Klaustermeier, Ryan Limb, Aaron Daigh, Kevin Sedivec & Thomas DeSutter School of Natural Resource Sciences, North Dakota State University, Fargo, North Dakota

OIL PRODUCTION IN NORTH DAKOTA

- First oil boom 1950's¹
- Second oil boom late 1970's¹
- Third oil boom 2000's

BAKKEN REGION

- Bakken & Three Forks
 Formation¹
- Hydraulic fracturing
- North Dakota is the second largest oil producer in the U.S.

OIL-PRODUCED WATER (I.E. BRINE)

- Brine is a by-produce of oil and gas extraction
 - > 90% sodium chloride (NaCl))²
- 1:1 brine to oil production ratio³
- Spills are a result of equipment failure⁴

JUSTIFICATION FOR REMEDIATION

- Non-remediated brine spills don't recover naturally
- Brine plume expansion³
- Remediation aims to remove or minimize the abiotic stressor

IMPACTS OF BRINE ON SOIL & VEGETATION

- Sodium (Na⁺) disperses clay particles
 - Loss of soil structure
 - Clogs soil pores
- Ion toxicity
- Salts increase soil water osmotic potential

In situ

Chemically amended (Ca²⁺) and subsequent leaching

Topsoil excavation with soil replacement

OBJECTIVES

- Evaluate *in situ* & *ex situ* remediation techniques:
 - ➢ Soil EC_e
 - Plant cover
 - Plant production

Chemical Amendment (in situ)

Topsoil Excavation (*ex situ*)

HYPOTHESIS

 We hypothesize no difference in soil and plant parameters between reference sites and respective remediation techniques

SITE SELECTION

- Little Missouri National Grasslands in western North Dakota
- 10 chemical amendment & 11 topsoil excavation
 - > July-August 2015
- Paired-plot design
 - Reference vs. remediated

Map Credit: Sarah Anderson

EXPERIMENTAL DESIGN

Reference

Remediated

MATERIALS & METHODS

- Soil samples: 0-15, 15-30, & 30-60 cm
- Percent cover estimated (1x1m frame)
 - Modified Daubenmire (1959) cover class method
- Biomass: native and exotic functional plant groups

Statistical Analysis

- EC_{1:1} converted to EC_e values^{6,7,& 8}
 - t-tests (alpha 0.05)
- Biomass & Ground Cover
 - t-tests
- Plant Cover (PC-ORD 6.0®)
 - Diversity Indicies (t-tests)
 - Sørensen Dissimilarity Index (t-tests)
 - Nonmetric multidimensional scaling (NMS) ordination
 - PerMANOVA

RESULTS

Soil EC_e

- $EC_e \neq 0$ (p < 0.05) at the three depths
 - Reference Remediated = Difference (A's & B's)
 - Residual brine salts
 - Pockets of natural salinity
- EC_e chemical = EC_e topsoil (p > 0.05) to 60 cm

Remediated_{chemical} – Remediated_{topsoil} = Difference (X's)

GROUND COVER

- Bare ground (p < 0.05)
 ▶ REF ≠ REM
 - $ightarrow \mathsf{REM}_{chem} \neq \mathsf{REM}_{top}$
- Litter (p < 0.05) (p = 0.08)

 \succ REF \neq REM

$$ightarrow REM_{chem} = REM_{top}$$

BIOMASS

- Native grass, native forb, exotic forb, native shrub (p < 0.05)
 - ► REF ≠ REM
- Exotic grass (p ≥ 0.05)
 - \succ REF = REM
- Native grass (p = 0.09), exotic grass, exotic forb, & native shrub (p ≥ 0.05)
 - $ightarrow REM_{chem} = REM_{top}$
- Native forbs (p < 0.05)

 $\mathbf{FREM}_{chem} \neq \mathbf{REM}_{top}$

Diversity Indicies

- <u>Species Richness</u> (number of species in a given area)
 - ightarrow REF \neq REM (p < 0.05)
 - $ightarrow REM_{chem} = REM_{top} (p \ge 0.05)$
- <u>Species Evenness</u> (relative abundance of species within a local area) (p ≥ 0.05)
 - \succ REF = REM
 - $ightarrow REM_{chem} = REM_{top}$
- Simpson's Diversity (characterizes biodiversity within a community) (p ≥ 0.05)

 \succ REF = REM

$$ightarrow REM_{chem} = REM_{top}$$

Sørensen Dissimilarity Index

- The Sørensen Dissimilarity Index (p ≥ 0.05)
 - $ightarrow REM_{chem} = REM_{top}$
- Vegetation on remediated sites are still recovering

NMS ORDINATION

- Remediated brine spill sites are significantly different from reference sites (p < 0.05)
- Reference sites were more associated with native species
- Ruderal and exotic plant species are more associated with remediated brine spill sites

DISCUSSION

- Remediation (CaCl₂) lowered EC_e to allow revegetation⁹
- Native plant establishment higher on remediated than non-remediated spill⁹
- Foxtail barley, western wheatgrass, *Kochia scoparia*, Annual sunflower, & curly cup gumweed naturally revegetate oil contaminated sites¹⁰

DISSCUSSION CONTINUED

- No soil or plant community data on topsoil excavation sites
- No significant difference in EC_e between remediation techniques
- Topsoil excavation is expensive

CONCLUSIONS: CHEMICAL VS. TOPSOIL

- EC_e & vegetation significantly different between reference & remediated sites
- No significant difference in EC_e between remediation techniques
- Bare ground more prevalent on topsoil excavation sites
- Spills sites undergoing succession

MANAGEMENT STRATEGIES

 No remediation technique is perfect

> Chemical: brine salts migrate with soil water

Topsoil: Exotic seed bank & potentially different soil composition

 Attainable plant composition objectives

MANAGEMENT STRATEGIES

- Exotic species are opportunistic
- Native halophytes
 - Plant roots uptake salt ions¹¹
 - USFS seed mix: western wheatgrass, green needlegrass, praire sandreed, & Canada wild rye¹²
- Remediation is a slow process

REFERENCES

- ¹Lefever, J. A. (1991) History of oil production from the Bakken Formation, North Dakota. , 3–17.
- ²Aschenbach, T.A. & Kindscher, K. (2006) Plant species on salt-affected soil at Cheyenne Bottoms, Kansas. Transactions of the Kansas Academy of Science, 109, 207–213.
- ³Murphy E.C. (1988) Leachate generated by an oil-and-gas brine pond site in North Dakota. Ground Water, 26, 31–37.
- ⁴ Sublette, K.L., Moralwar, A., Ford, L., Duncan, K., Thoma, G. & Brokaw, J. (2005) Remediation of a spill of crude oil and brine without gypsum. Environmental Geosciences, 12, 115–125.
- ⁵Daubenmire R (1959) A canopy-coverage method of vegetational analysis. Northwest Science 33: 43-64
- ⁶Klaustermeier A., H. Tomlinson, A. L. Daigh, R. Limb, T. DeSutter, and K. Sedivec. (2016). Comparison of soil-to-water suspension ratios for determining electrical conductivity of oil-production water contaminated soils. Canadian Journal of Soil Science
- ⁷Rhoades, J.D., Manteghi, N.A., Shouse, P.J. & Alves, W.J. (1989) Soil electrical conductivity and soil salinity: New formulations and calibrations. Soil Science Society of America Journal, 53, 433–439.
- ⁸Zhang, H., Schroder, J.L., Pittman, J.J., Wang, J.J. & Payton, M.E. (2005) Soil salinity using saturated paste and 1:1 soil to water extracts. Soil Science Society of America Journal, 69, 1146
- ⁹Halvorson, G.A. & Lang, K.L. (1989) Revegetation of a salt water blowout site. Journal of Range Management, 42, 61–65.
- ¹⁰Mcfarland, M.L., Ueckert, D.N. & Hartmann, S. (1987) Revegetation of oil well reserve pits in west Texas. Journal of Range Management, 40, 122–127.
- ¹¹Keiffer, C. & Ungar, I. (2002) Germination and establishment of halophytes on brineaffected soils. Journal of Applied Ecology, 39(3): 402-415.
- ¹²United States Department of Agriculture: United States Forest Service. (2007). Reclamation scenario #12 (#37-28A Seed Mixture)

THANK YOU!

- Carmen Waldo, Natural Resource Specialist, USFS Medora Ranger District
- Funding: Energy and Environmental Research Center & North Dakota Industrial Commission

