
Effects of remediation techniques on selected grass species seeding's associated with legacy brine waste pits in north-central North Dakota

Kevin Sedivec, Ryan Limb, Aaron Daigh, Tom DeSutter, Aaron Klostermeier, and Hannah Thomlinson North Dakota State University – School of Natural Resource Sciences

Funded by NDIC - Oil and Gas Research Council

Legacy Brine Pits in North Dakota

Electrical Conductivity (EC) of selected legacy sites in north-central North Dakota

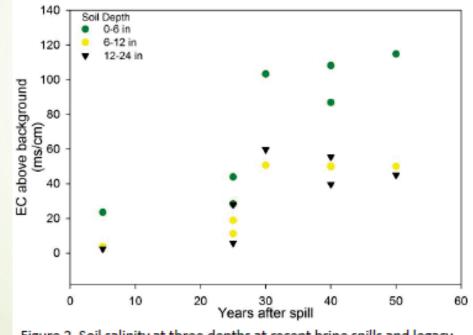


Figure 2. Soil salinity at three depths at recent brine spills and legacy brine waste pits in north central North Dakota.

Brine Contamination

Studies at North Dakota State University

Long-term Objective

- Determine and publish best management practices
 - Reclamation
 - Compaction
 - Remediation of brine impacted soils

Studies at North Dakota State University

For this presentation

- Determining EC
 thresholds of halophytic and selected non-halophytic grasses
- Determine if seed conditioning with NaCl will enhance survivability under different EC levels of selected grass species

Studies at North Dakota State University

For this presentation

 Study different brine remediation techniques on establishing select perennial grasses

Study Areas in North Dakota

Study Areas in North Dakota

- Green house and laboratory projects conducted at North Dakota State University
- Remediation study (Phase One) occurred on both crop and range land – 11 total sites
 - Determine if brine impacted soils will return to pre-spill EC levels with time
- Remediation study (Phase two) occurred on three study locations – all cropland
 - Tested select remediation agents at different EC levels (3.26 to 89.6 ds m⁻¹) on perennial grass establishment

Will Brine Impacted Soils (Crop and Range) improve with Time?

EC Threshold Study

EC Threshold Study – 100% Seedling Survival

- Nuttall's alkaligrass (Puccinellia nuttalliana): 36+ dS m⁻¹
- Inland saltgrass (Distichlis spicatum): 36+
- Foxtail barley (Hordeum jubatum): 36+
- Alkali sacaton (Sporobolus airoides): 36 (90%)
- Western wheatgrass (Pascopyrum smithii): 20
 - 40% @ 36 dS m⁻¹

EC Threshold Study – 100 % Survival at the Late Vegetative – Pre-boot Growth Phase

Nuttall's alkaligrass:	36+ dS m ⁻
Alkali sacaton:	36+
Foxtail barley:	36+
Inland saltgrass:	20
► 80% @ 36 EC	
Western wheatgrass:	20
► 62% @ 36 EC	
Green needlegrass:	16
Blue grama	20
Little bluestem:	20

Survivability of Grass Plugs and Seedlings on Legacy Brine Spills using Amendments

Amendments

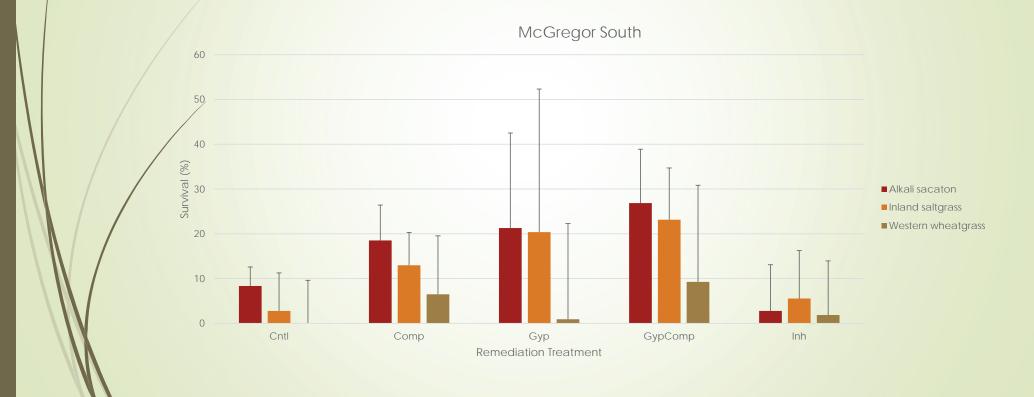
- Compost
- Gypsum
- Combination of Compost and Gypsum
- Ferric hexacyanoferrate (C₁₈F₇N₁₈) crystallization inhibitor
- Control

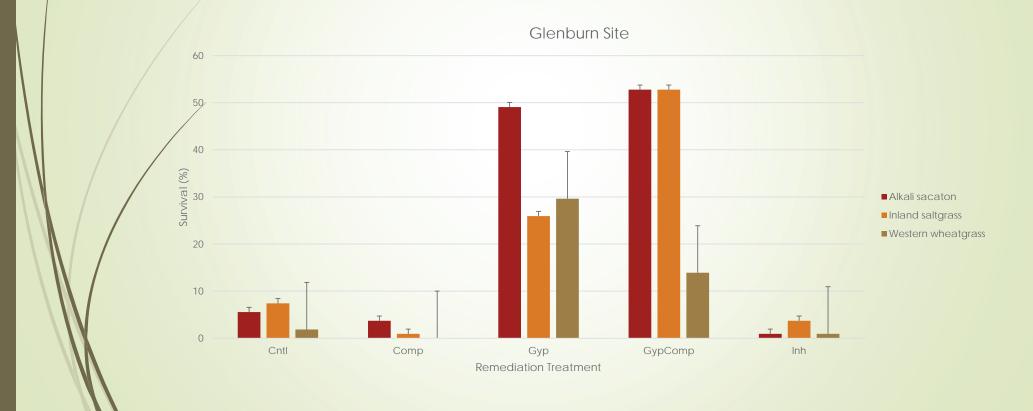
Plugs and Seed Survivability

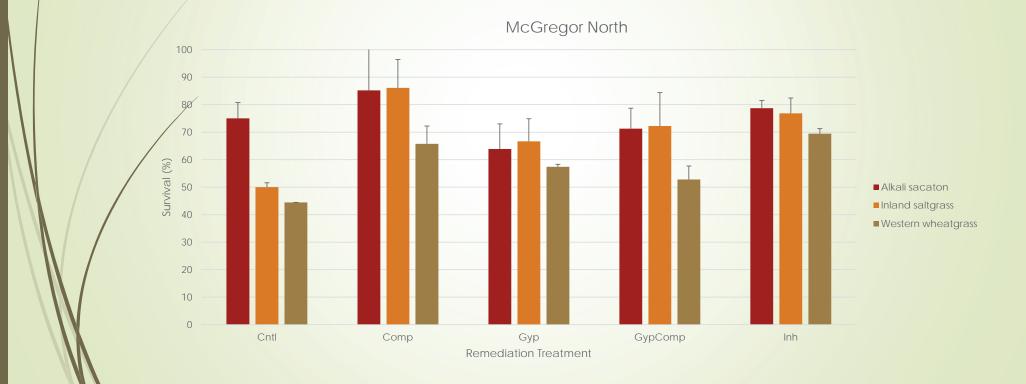
- Plugs planted in August
- Seeds planted in October (dormant seeding)
 - Western wheatgrass
 - Inland saltgrass
 - Alkali sacaton

North of Glenburn, ND in Bottineau County(T157N, R82W, NW1/4 Section 36)

North of McGregor, ND in Burke County(T160N, R94W, SW1/4 Section 19)


North of McGregor, ND in Divide County(T160N, R95W, SE1/4 Section 25)


Treatments after amendments applied


Survivability of Grass Plugs on Legacy Brine Contaminated Sites

Survivability of Grass Plugs on Legacy Brine Contaminated Sites

Survivability of Grass Plugs on Legacy Brine Contaminated Sites

Planned for 2017

Summary

- Brine impacted soils DO NOT self remediation Basically, remediation needed to improve contaminated soils
- Nuttall alkaligrass, alkali sacaton, inland saltgrass were superior grass species to plant on brine impacted soils with gypsum or gypsum/composite amendments
 - Western wheatgrass worked successfully on soils with EC levels < 20 dS m⁻¹
- Using plugs appeared to withstand higher EC levels than seedlings (based on green house project)

